Soliton-pair dynamical transition in mode-locked lasers

Author:

Sulimany KfirORCID,Tziperman Offek,Bromberg YaronORCID,Gat Omri

Abstract

The self-assembly of solitons into nonlinear superpositions of multiple solitons plays a key role in the complex dynamics of mode-locked lasers. These states are extensively studied in light of their potential technological applications and their resemblance to molecules that offer opportunities for studying molecular interactions. However, progress along these endeavors is still held back by the lack of effective means to manipulate multi-soliton waveforms. Here we show it is possible to control inter-soliton interactions in mode-locked fiber lasers using a single control knob, the laser gain. We experimentally demonstrate a 2-orders-of-magnitude reduction in the separation of bound soliton pairs by sweeping the pumping current of the laser. The sweep induces a dynamical transition between a phase-incoherent loosely bound state and a phase-locked tightly bound state. Using numerical simulations and a simplified analytical model, we find that the dynamical transition is governed by noise-mediated interactions, which can be switched between repulsion and attraction. The discovery of a single control parameter that sets the nature of the inter-soliton interaction points to possibilities for controlling multi-soliton states for optical communication systems and pump-probe spectroscopy.

Funder

Zuckerman STEM Leadership Program

Council for Higher Education

Israel Science Foundation

United States-Israel Binational Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3