Affiliation:
1. Argonne National Laboratory
Abstract
X-ray phase-contrast imaging has become indispensable for visualizing samples with low absorption contrast. In this regard, speckle-based techniques have shown significant advantages in spatial resolution, phase sensitivity, and implementation flexibility compared with traditional methods. However, the computational cost associated with data inversion has hindered their wider adoption. By exploiting the power of deep learning, we developed a speckle-based phase-contrast imaging neural network (SPINNet) that significantly improves the imaging quality and boosts the phase retrieval speed by at least 2 orders of magnitude compared to existing methods. To achieve this performance, we combined SPINNet with a coded-mask-based technique, an enhanced version of the speckle-based method. Using this scheme, we demonstrate the simultaneous reconstruction of absorption and phase images on the order of 100 ms, where a traditional correlation-based analysis would take several minutes even with a cluster. In addition to significant improvement in speed, our experimental results show that the imaging and phase retrieval quality of SPINNet outperform existing single-shot speckle-based methods. Furthermore, we successfully demonstrate SPINNet application in x-ray optics metrology and 3D x-ray phase-contrast tomography. Our result shows that SPINNet could enable many applications requiring high-resolution and fast data acquisition and processing, such as in situ and in operando 2D and 3D phase-contrast imaging and real-time at-wavelength metrology and wavefront sensing.
Funder
Argonne National Laboratory
Office of Science
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献