Abstract
Optical phased arrays (OPAs), the optical counterpart of phased arrays at radio frequencies, can electronically steer an optical beam without any moving parts. To achieve a 180° field of view (FOV), the array emitters should be spaced a half-wavelength apart or less. However, a conventional OPA based on a waveguide grating array suffers from strong cross talk between adjacent waveguides when the pitch is a half-wavelength or less. Here, we theoretically describe and experimentally demonstrate a two-dimensional aliasing-free beam steering regime for an integrated OPA with the entire 180° FOV. We achieve this by using a half-wavelength-pitch waveguide array combined with a trapezoidal slab grating as a single emitter. Our OPA also features a low sidelobe level of
<
−
19
d
B
while the beam is steered from
−
40
∘
to
+
40
∘
, breaking the trade-off between FOV and beam quality. The chip-based OPA with a large beam steering range and high beam quality provides a promising route for a compact, solid-state, cost-effective, and high-performance light detection and ranging system, enabling a wide range of classical and quantum applications.
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献