Abstract
Chip-based optical amplifiers can significantly expand the functionalities of photonic devices. In particular, optical-parametric amplifiers (OPAs), with engineerable gain spectra, are well suited for nonlinear-photonic applications. Chip-based OPAs typically require long waveguides that occupy a large footprint, and high pump powers that cannot be easily produced with chip-scale lasers. We theoretically and experimentally demonstrate a microresonator-assisted regenerative OPA that benefits from the large nonlinearity enhancement of microresonators and yields a high gain in a small footprint. We achieve 30-dB parametric gain with only 9 mW of cw pump power and show that the gain spectrum can be engineered to cover telecom channels inaccessible with Er-based amplifiers. We further demonstrate the amplification of Kerr-soliton comb lines and the preservation of their phase properties. Additionally, we demonstrate amplification by injection locking of optical parametric oscillators (OPOs), which corresponds to a regenerative amplifier pumped above the oscillation threshold. Dispersion engineering techniques such as coupled cavities and higher-order-dispersion phase matching can further extend the tunability and spectral coverage of our amplification schemes. The combination of high gain, small footprint, low pump power, and flexible gain-spectrum engineering of our regenerative OPA is ideal for amplifying signals from the nanowatt to microwatt regimes for portable or space-based devices where ultralow electrical power levels are required and can lead to important applications in on-chip optical-, and microwave-frequency synthesis and precise timekeeping.
Funder
Defense Advanced Research Projects Agency
Air Force Office of Scientific Research
Army Research Office
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献