Large regenerative parametric amplification on chip at ultra-low pump powers

Author:

Zhao YunORCID,Jang Jae K.ORCID,Ji XingchenORCID,Okawachi YoshitomoORCID,Lipson Michal,Gaeta Alexander L.

Abstract

Chip-based optical amplifiers can significantly expand the functionalities of photonic devices. In particular, optical-parametric amplifiers (OPAs), with engineerable gain spectra, are well suited for nonlinear-photonic applications. Chip-based OPAs typically require long waveguides that occupy a large footprint, and high pump powers that cannot be easily produced with chip-scale lasers. We theoretically and experimentally demonstrate a microresonator-assisted regenerative OPA that benefits from the large nonlinearity enhancement of microresonators and yields a high gain in a small footprint. We achieve 30-dB parametric gain with only 9 mW of cw pump power and show that the gain spectrum can be engineered to cover telecom channels inaccessible with Er-based amplifiers. We further demonstrate the amplification of Kerr-soliton comb lines and the preservation of their phase properties. Additionally, we demonstrate amplification by injection locking of optical parametric oscillators (OPOs), which corresponds to a regenerative amplifier pumped above the oscillation threshold. Dispersion engineering techniques such as coupled cavities and higher-order-dispersion phase matching can further extend the tunability and spectral coverage of our amplification schemes. The combination of high gain, small footprint, low pump power, and flexible gain-spectrum engineering of our regenerative OPA is ideal for amplifying signals from the nanowatt to microwatt regimes for portable or space-based devices where ultralow electrical power levels are required and can lead to important applications in on-chip optical-, and microwave-frequency synthesis and precise timekeeping.

Funder

Defense Advanced Research Projects Agency

Air Force Office of Scientific Research

Army Research Office

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3