Clamped and sideband-resolved silicon optomechanical crystals

Author:

Kolvik Johan,Burger Paul,Frey Joey,Van Laer RaphaëlORCID

Abstract

Optomechanical crystals (OMCs) are a promising and versatile platform for transduction between mechanical and optical fields. However, the release from the substrate used in conventional suspended OMCs also complicates manufacturing and severely reduces thermal anchoring. This may be improved by attaching the OMCs directly to the substrate. Previous work towards such clamped, i.e., non-suspended, OMCs suffers from weak interaction rates and insufficient lifetimes. Here, we present a class of clamped OMCs realizing—for the first time, to our knowledge—optomechanical interactions in the resolved-sideband regime required for quantum transduction. Our approach leverages high-wavevector mechanical modes outside the continuum. We observe a record zero-point optomechanical coupling rate of g0/(2π)≈0.50MHz along with a sevenfold improvement in the single-photon cooperativity of clamped OMCs. Our devices operate at frequencies commonly used in superconducting qubits. This opens an avenue using clamped OMCs in both classical and quantum communications, sensing, and computation through scalable mechanical circuitry that couples strongly to light.

Funder

Wallenberg Centre for Quantum Technology, Chalmers University of Technology

European Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3