Cancellation of photothermally induced instability in an optical resonator

Author:

Qin JiayiORCID,Guccione GiovanniORCID,Ma Jinyong1ORCID,Gu Chenyue,Lecamwasam Ruvi2ORCID,Buchler Ben C.,Lam Ping Koy3

Affiliation:

1. The Australian National University

2. Okinawa Institute of Science and Technology Graduate University

3. Agency for Science Technology and Research

Abstract

Optical systems are often subject to parametric instability caused by the delayed response of the optical field to the system dynamics. In some cases, parasitic photothermal effects aggravate the instability by adding new interaction dynamics. This may lead to the possible insurgence or amplification of parametric gain that can further destabilize the system. In this paper, we show that the photothermal properties of an optomechanical cavity can be modified to mitigate or even completely cancel optomechanical instability. By inverting the sign of the photothermal interaction to let it cooperate with radiation pressure, we achieve control of the system dynamics to be fully balanced around a stable equilibrium point. Our study provides a feedback solution for optical control and precise metrological applications, specifically in high-sensitivity resonating systems that are particularly susceptible to parasitic photothermal effects, such as our test case of a macroscopic optical levitation setup. This passive stabilization technique is beneficial for improving system performance limited by photothermal dynamics in broad areas of optics, optomechanics, photonics, and laser technologies.

Funder

Centre of Excellence for Quantum Computation and Communication Technology, Australian Research Council

Australian Government Research Training Program Scholarship

Australian Research Council Laureate Fellowship

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3