Frequency stability of cryogenic silicon cavities with semiconductor crystalline coatings

Author:

Kedar DhruvORCID,Yu Jialiang1,Oelker Eric2,Staron Alexander,Milner William R.,Robinson John M.,Legero Thomas1ORCID,Riehle Fritz1ORCID,Sterr Uwe1ORCID,Ye JunORCID

Affiliation:

1. Physikalisch-Technische Bundesanstalt

2. University of Glasgow

Abstract

State-of-the-art optical oscillators employing cryogenic reference cavities are limited in performance by the Brownian thermal noise associated with the mechanical dissipation of the mirror coatings. Recently, crystalline Al1−xGa x As/GaAs coatings have emerged as a promising candidate for improved coating thermal noise. We present measurements of the frequency noise of two fully crystalline cryogenic reference cavities with Al0.92Ga0.08As/GaAs optical coatings. We report on birefringent noise associated with anticorrelated frequency fluctuations between the polarization modes of the crystalline coatings and identify variables that affect its magnitude. Comparing the birefringent noise between the two cryogenic reference cavities reveals a phenomenological set of scalings with intracavity power and mode area. We implement an interrogation scheme that cancels this noise by simultaneous probing of both polarization modes. The residual noise remaining after this cancellation is larger than both cavities’ thermal noise limits but still lower than the instabilities previously measured on equivalent resonators with dielectric coatings. Though the source of these noise mechanisms is unclear, we demonstrate that crystalline coatings can provide stability and sensitivity competitive with resonators employing dielectric coatings.

Funder

National Institute of Standards and Technology

Defense Advanced Research Projects Agency

Air Force Research Laboratory

National Science Foundation

European Metrology Programme for Innovation and Research

Deutsche Forschungsgemeinschaft

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3