Affiliation:
1. Institute for Solid State Physics and Optics
2. University of Pécs
3. MTA-PTE High-Field Terahertz Research Group
Abstract
We propose two novel types of spatially multiplexed single-photon sources based on incomplete binary-tree multiplexers. The incomplete multiplexers are extensions of complete binary-tree multiplexers, and they contain incomplete branches either at the input or at the output of them. We analyze and optimize these systems realized with general asymmetric routers and photon-number-resolving detectors by applying a general statistical theory introduced previously that includes all relevant loss mechanisms. We show that the use of any of the two proposed multiplexing systems can lead to higher single-photon probabilities than that achieved with complete binary-tree multiplexers. Single-photon sources based on output-extended incomplete binary-tree multiplexers outperform those based on input-extended ones in the considered parameter ranges, and they can in principle yield single-photon probabilities higher than 0.93 when they are realized by state-of-the-art bulk optical elements. We show that the application of the incomplete binary-tree approach can significantly improve the performance of the multiplexed single-photon sources for suboptimal system sizes that is a typical situation in current experiments.
Funder
National Research, Development and Innovation Office
European Social Fund
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献