Quantum tunneling effect on the surface enhanced Raman process in molecular systems

Author:

Ma Weiqi1,Dai Qiyuan1,Wei Yong1,Li Li1

Affiliation:

1. Yanshan University

Abstract

In this paper, we theoretically study the effect of quantum tunneling on the surface enhanced Raman scattering (SERS) of a generic molecule confined in sub-nanometer nanocavities formed by metallic dimers. The tunneling effect was described by the quantum corrected model in combination with finite element simulations. The SERS spectra were calculated by a density matrix method. Simulation results demonstrate that both the field enhancement and the molecular SERS spectra are very sensitive to the size of the cavity. By decreasing the gap size, the local field enhancement first increases then starts to be significantly suppressed as a result of the tunneling effect which neutralizes the positive and negative induced charges in the nanocavity. Consequently, the SERS intensity also experienced dramatic decrease in the short gap distance region. We also show that both the plasmonic enhancement to the local field and the enhanced molecular decay rates have to be taken into account to understand the SERS properties of the molecule in such sub-nanometer nanocavities. These results could be helpful for the understanding of the surface enhanced spectral properties of molecular systems at sub-nanometer nanocavities.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3