Effect of chirped factors on the abrupt autofocusing ability of a chirped circular Airyprime beam

Author:

Zang Xiang,Dan Wensong,Zhou Yimin,Wang Fei1,Cai Yangjian2,Mei Zhangrong3ORCID,Zhou GuoquanORCID

Affiliation:

1. Soochow University

2. Shandong Normal University

3. Huzhou College

Abstract

Recently, a new type of abruptly autofocusing beam called circular Airyprime beam (CAPB) has been reported. Its abrupt autofocusing ability has been proven to be approximately seven times that of a circular Airy beam under the same conditions. Further improving the abrupt autofocusing ability of the CAPB without changing the beam parameters is a concern in optical research. In this study, we investigated the effect of introducing first- and second-order chirped factors on the abrupt autofocusing ability of the CAPB. When the positive first-order chirped factor was below the saturated chirped value, the abrupt autofocusing ability of the chirped CAPB was stronger and the focus position was smaller compared with those of the conventional CAPB. Regarding the abrupt autofocusing ability, there was an optimal value for the first-order chirped factor. At the optimal value, the abrupt autofocusing ability of the chirped CAPB was the strongest. On the other hand, a positive second-order chirped factor promoted the abrupt autofocusing ability of the CAPB and shortened the focus position. The introduction of such value was more effective than the introduction of a positive first-order chirped factor in promoting abrupt autofocusing of the CAPB. The abrupt autofocusing ability of the CAPB was further improved by combining the optimal first-order chirped factor and a positive second-order chirped factor. Finally, the chirped CAPB was experimentally generated, and the corresponding abrupt autofocusing behaviors were measured, validating the theoretical results. Overall, we provide an approach for improving abruptly autofocusing CAPBs.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3