Improving spectral linewidth performance of InP quantum dots by promoting size-focused growth and decreasing exciton-phonon coupling

Author:

Wang Linfeng1,Bai Jinke2,Huang Xiaoyue,He Xuanhui,Yang Zhiwei,Zhang Tingting,Li QinghuaORCID,Jin XiaoORCID,Wang Yuxiao1,Zhang Xueru1,Song Yinglin1

Affiliation:

1. Harbin Institute of Technology

2. Taiyuan University

Abstract

InP-based quantum dots (QDs) are widely adopted as a superior alternative to CdSe-based QDs in various fields owing to their high quantum yield, environmental friendliness, and excellent stability. However, improving its color purity remains a challenging task. In this work, we employ a multistage heating strategy to optimize the nucleation and shell growth processes of amino-phosphine-based InP/ZnSe/ZnS QDs for reducing emission linewidths. The multistage heating strategy mitigates the undesired formation of small-size cores by decreasing monomer supersaturation during the nucleation process, thereby promoting size-focusing growth. During the shelling process, multistage heating effectively suppresses Zn2+ diffusion into the InP core while ensuring high-quality shell growth, thus reducing the homogeneous broadening caused by exciton-phonon coupling. Compared to classical synthesis, the multistage heating strategy can reduce the emission linewidth of nucleation and shelling by 13.2% and 30.9% respectively. The optimized InP/ZnSe/ZnS QDs exhibit a narrow full width at half maximum (FWHM) of 41.5 nm at 630 nm, representing significant progress in studying spectral linewidths of amino-phosphine InP QDs. This work provides potential insights for further improving the spectral linewidth performance of InP QDs or other nanocrystals with similar reaction-limited growth systems.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Scientific Foundation of the Higher Education Institutions of Guangdong Province

Talent Project of Lingnan Normal University

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3