Single-shot quantitative phase contrast imaging based on deep learning

Author:

Lin Yu-Chun,Luo Yuan,Chen Ying-Ju,Chen Huei-Wen1,Young Tai-Horng1,Huang Hsuan-Ming

Affiliation:

1. National Taiwan University

Abstract

Quantitative differential phase-contrast (DPC) imaging is one of the commonly used methods for phase retrieval. However, quantitative DPC imaging requires several pairwise intensity measurements, which makes it difficult to monitor living cells in real-time. In this study, we present a single-shot quantitative DPC imaging method based on the combination of deep learning (DL) and color-encoded illumination. Our goal is to train a model that can generate an isotropic quantitative phase image (i.e., target) directly from a single-shot intensity measurement (i.e., input). The target phase image was reconstructed using a linear-gradient pupil with two-axis measurements, and the model input was the measured color intensities obtained from a radially asymmetric color-encoded illumination pattern. The DL-based model was trained, validated, and tested using thirteen different cell lines. The total number of training, validation, and testing images was 264 (10 cells), 10 (1 cell), and 40 (2 cells), respectively. Our results show that the DL-based phase images are visually similar to the ground-truth phase images and have a high structural similarity index (>0.98). Moreover, the phase difference between the ground-truth and DL-based phase images was smaller than 13%. Our study shows the feasibility of using DL to generate quantitative phase imaging from a single-shot intensity measurement.

Funder

National Science and Technology Council

National Taiwan University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3