Sub-shot-noise-limited phase estimation via single-mode inputs

Author:

Zhang Jian-Dong,You Chenglong1,Wang Shuai

Affiliation:

1. Louisiana State University

Abstract

In 1981, Caves pointed out that the phase sensitivity of a Mach-Zehnder interferometer with single-mode inputs is bounded by the shot-noise limit. The quantum Fisher information analysis shows that this statement holds true for the scenario where two antisymmetric phase shifts occur in two arms, but it is invalid for the scenario where an unknown phase is embedded in one of two arms. In this paper, we focus on the phase sensitivity directed against the latter scenario. The optimal single-mode input is discussed by analyzing common states, including displaced squeezed states, displaced number states, squeezed number states, Schrödinger cat states and completely mixed states. We find that the best choice is a squeezed vacuum state and show the specific measurement scheme which is capable of saturating the corresponding phase sensitivity limit. In addition, we study the effects of several realistic factors–anti-squeezing noise, photon loss and dark counts–on the phase sensitivity. Our results suggest that sub-shot-noise-limited phase sensitivity is attainable with low noise or loss, which paves the way for practical metrology.

Funder

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Shuangchuang Ph.D Award

Project for Leading Innovative Talents in Changzhou

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3