Performance analysis of free space optical communications with FOA-WFS

Author:

Mao Yongming,Cao Jingtai1,Wang Zhimin,Ma Xinyang,Gu Haijun,Liu Wei

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

Abstract

Adaptive optics (AO) technology can correct wavefront distortion in coherent free space optical communication (FSOC), with wavefront sensors playing a vital role in this process. However, traditional wavefront sensors are large and expensive. Therefore, we propose using the inexpensive and easy-to-deploy flat optics angle-based wavefront sensor (FOA-WFS) to measure the wavefront aberration. It aims to meet the needs of various FSOC applications. We first establish the relationship between the energy ratio and the Zernike coefficient through theoretical studies and analyze the feasibility of applying the FOA-WFS to the FSOC. We then generate experimental datasets based on the relevant principles. Through numerical simulation, we verify that it can reconstruct wavefront aberration accurately and improve system performance. Finally, we analyze the mixing efficiency and bit error rate based on the collected aberration data by the experimental platform. The results indicate that the AO system based on the FOA-WFS can efficiently improve the performance of the FSOC. This study provides a novel wavefront aberration detection method for designing the AO systems in the FSOC.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Jilin Provincial Scientific and Technological Development Program

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3