HyperColorization: propagating spatially sparse noisy spectral clues for reconstructing hyperspectral images

Author:

Aydin M. Kerem,Guo Qi1,Alexander Emma

Affiliation:

1. Purdue University

Abstract

Hyperspectral cameras face challenging spatial-spectral resolution trade-offs and are more affected by shot noise than RGB photos taken over the same total exposure time. Here, we present a colorization algorithm to reconstruct hyperspectral images from a grayscale guide image and spatially sparse spectral clues. We demonstrate that our algorithm generalizes to varying spectral dimensions for hyperspectral images, and show that colorizing in a low-rank space reduces compute time and the impact of shot noise. To enhance robustness, we incorporate guided sampling, edge-aware filtering, and dimensionality estimation techniques. Our method surpasses previous algorithms in various performance metrics, including SSIM, PSNR, GFC, and EMD, which we analyze as metrics for characterizing hyperspectral image quality. Collectively, these findings provide a promising avenue for overcoming the time-space-wavelength resolution trade-off by reconstructing a dense hyperspectral image from samples obtained by whisk or push broom scanners, as well as hybrid spatial-spectral computational imaging systems.

Funder

Dolby

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3