Abstract
We demonstrate an intriguing transmittance contrast in a glide-symmetric square-lattice photonic crystal waveguide with a 90-degree sharp bend. The glide-symmetry gives rise to a degeneracy point in the band structure and separates a high-frequency and a low-frequency band. Previously, a similar large transmittance contrast between these two bands has been observed in glide-symmetric triangular- or honeycomb-lattice photonic crystals without inversion symmetry, and this phenomenon has been attributed to the valley-photonic effect. In this study, we demonstrate the first example of this phenomenon in square-lattice photonic crystals, which do not possess the valley effect. Our result sheds new light onto unexplored properties of glide-symmetric waveguides. We show that this phenomenon is related to the spatial distribution of circular polarization singularities in glide-symmetric waveguides. This work expands the possible designs of low-loss photonic circuits and provides a new understanding of light transmission via sharp bends in photonic crystal waveguides.
Funder
Japan Science and Technology Agency
Japan Society for the Promotion of Science