Dynamic accuracy measurement method for star trackers using a time-synchronized high-accuracy turntable

Author:

Lu Rui12,Zhang Jianfu12,Han Xing12,Wu Yanpeng12,Li Lin12

Affiliation:

1. Beijing Institute of Control Engineering

2. China Academy of Space Technology

Abstract

Star trackers are typically used in a spacecraft to provide absolute attitude information to the on-board attitude control system so as to promote high accuracy. The performance of the star tracker is rather important. Attitude incorrectness provided by star trackers may lead to bad navigation with big deviations, even failure of satellites. Therefore, how to realize and verify the accuracy is crucial. As a matter of fact, it is difficult to validate accuracy of star trackers on the ground, especially for star trackers under highly dynamic conditions. In this paper, an accuracy measurement method for star trackers under dynamic conditions is proposed, utilizing a high-accuracy swing table to provide reference to compare. To this end, a swing table, star tracker, and the test equipment are synchronized, in order to reduce systematic errors. As the motion trajectory of the swing table can be set beforehand, the initial attitude of the star tracker can be predicted through a set of coordinate transformations. As a result, the star tracker is able to keep tracking, regardless of the angular velocity of the swing table. This makes the statistical sample points more sufficient and the results more reliable. Moreover, it can evaluate the angular velocity of star trackers up to 20°/s. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets making the measurement results much closer to the on-orbit performance. Lastly, but much more importantly, it can also verify the performance of a star tracker in one experiment, such as sensitivity, static performance, capture probability, and so on. Experimental results demonstrate that the proposed method is effective, especially for highly dynamic star trackers. Such a measurement environment is close to the in-orbit conditions, and it can satisfy the stringent requirement for star trackers under high dynamics.

Funder

National Natural Science Foundation General Projects

Publisher

Optica Publishing Group

Reference36 articles.

1. Accuracy performance of star trackers - a tutorial

2. Micro APS based star tracker;Liebe,2002

3. The advancing state-of-the-art in second generation star trackers;Eisenman,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3