Low-loss chalcogenide microstructured optical fibers prepared by eliminating interfaces defects

Author:

Liang Yachen1,Gu Zhengxiang1,Guan Yongnian1,He Lelu1,Xia Kelun2,Wang Xunsi13,Dai Shixun13,Shen Xiang123,Liu Zijun123ORCID

Affiliation:

1. Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province

2. Ningbo Institute of Oceanography

3. Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province

Abstract

The loss of chalcogenide microstructured optical fibers (ChG-MOFs) is generally higher than that of step fibers, mainly due to the immature fiber preform preparation method and strong waveguide defect scattering. Chemical polishing is used to polish mechanically drilled preforms to prepare ChG-MOFs with low defect scattering. Firstly, the scattering loss caused by the defective layer of ChG-MOFs is studied theoretically and experimentally. Then, a single-mode photonic crystal fiber (PCF) was prepared to verify the effect of chemical polishing on reducing fiber loss. The experimental results show that the PCF average loss is reduced from more than 8 dB/m to less than 2 dB/m, and the minimum loss reaches 0.8 dB/m @ 2.7 µm. At the same time, the bending strength of the PCF after chemical polishing is also significantly improved.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Natural Science Foundation of Zhejiang Province

Fundamental Research Funds for the Provincial Universities of Zhejiang

the Opening Project of Key Laboratory of Optoelectronic Detection Materials and Devices of Zhejiang Province

K. C. Wong Magna Fund in Ningbo University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3