Machine learning-driven optimization of photonic crystal structures for superior optical NOR gate performance

Author:

Parandin FariborzORCID,Karami Pouya,Mohamadi AlirezaORCID

Abstract

In this study, we employ a two-dimensional photonic crystal structure to design a NOR logic gate, utilizing dielectric rods in air. The compact size and simplicity of the design make this optical gate particularly suitable for integration into photonic integrated circuits. To optimize the optical NOR gate design and achieve superior results, we leverage machine learning techniques, specifically XGBoost and RandomForestRegressor. By fine-tuning the radii of defect rods within the photonic crystal lattice, we maximize output power and ensure optimal gate functionality across various input scenarios. Through extensive simulations and comparative analyses, we showcase the effectiveness of our approach in accurately predicting optimal rod radii and enhancing NOR gate performance. Notably, our design utilizes only two defect rods, highlighting the structure’s efficiency. Moreover, alongside the simplicity of our proposed design, it boasts high output power for logical 1 and low power for logical 0. This feature contributes to minimized errors in logical output detection, further underscoring the practicality and efficacy of our approach.

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3