High-performance transient SBS-based microwave measurement using high-chirp-rate modulation and advanced algorithms

Author:

Wang HenanORCID,Dong YongkangORCID

Abstract

The transient stimulated Brillouin scattering (SBS) effect, enabled by optical chirp chain (OCC) technology, has already been proposed and demonstrated for microwave frequency identification with high temporal resolution. Through increasing the OCC chirp rate, the instantaneous bandwidth can be effectively extended without loss of the temporal resolution. However, the higher chirp rate results in more asymmetric transient Brillouin spectra, which worsens the demodulation accuracy when using the traditional fitting method. In this Letter, advanced algorithms, including image processing and artificial neural network, are employed to improve the measurement accuracy and demodulation efficiency. A microwave frequency measurement scheme is implemented with 4 GHz instantaneous bandwidth and 100 ns temporal resolution. Through the proposed algorithms, the demodulation accuracy of transient Brillouin spectra under 50 MHz/ns high chirp rate is improved from 9.85 MHz to 1.17 MHz. Moreover, owing to the matrix computations of the proposed algorithm, the time consumption is reduced by two orders of magnitude compared with the fitting method. The proposed method allows a high-performance OCC transient SBS-based microwave measurement, which provides new possibilities to realize real-time microwave tracking for diverse application fields.

Funder

National Key Scientific Instrument and Equipment Development Projects of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3