Affiliation:
1. University of Chinese Academy of Sciences
Abstract
High-power laser diodes with a stable wavelength and narrow linewidth are crucial for many applications. In this study, we introduce a first-order distributed feedback (DFB) grating into an asymmetric large-cavity laser diode operating around 940 nm. This design maintains high output power and offers a wide temperature locking range. The nearly sinusoidal shape first-order grating is fabricated by ultraviolet (UV) nanoimprint lithography, inductively coupled plasma (ICP) dry etching, and wet polishing. At a heat sink temperature of 25°C, the DFB laser diode, with a 200 µm stripe width and 4 mm cavity length, achieves a maximum output power of 24.8 W and a full width at half maximum (FWHM) of 0.4 nm under continuous-wave (CW) conditions. The maximum slope efficiency is calculated to be 1.04 W/A. At an output power of 10.7 W, the device reaches a peak wall-plug efficiency of 56%. Under quasi-continuous operation at 20 A, the laser output spectrum remains locked to the DFB grating over a temperature range from −10°C to 110°C, with a temperature coefficient of 0.062 nm/°C.