Ab initio simulation of imaging of wavelength-sized objects and estimation of resolution

Author:

Maslov A. V.ORCID,Erykalin A. A.ORCID

Abstract

Image characterization in microscopy, in particular, the estimation of its resolution, requires detailed knowledge of its relation to the object. For objects with sizes comparable to or smaller than the operating wavelength, such a relation can be obtained only by considering electromagnetic scattering described by the Maxwell equations. Here we follow precisely the steps involved in the image formation in microscopy with broad angle illumination—starting from the Maxwell equations to find the scattered far fields for each plane wave, projecting them into a sensor array, and finally assembling the incoherent image by adding all coherent contributions. We consider a classical object—a narrow slit in an absorbing screen, which is taken as a very thin chromium film deposited on a glass substrate. The inapplicability of the Kirchhoff approximation for such a slit is addressed, and the calculated image is subsequently analyzed to evaluate its intrinsic resolution using a point spread function. The difference in image intensities defined using the Poynting vector and the electric field intensity is also discussed.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3