Investigation on the ultraviolet spectral radiation characteristics of two-phase flow plume based on OH and alumina particles

Author:

Li Jingying1,Chen Yang1,Li Jinlu2,Bai Lu2ORCID

Affiliation:

1. Xi’an University of Posts & Telecommunications

2. Xidian University

Abstract

Ultraviolet detection has advantages over radar and infrared detection, such as low background radiation and high resolution. The UV spectral radiation characteristics of exhaust plume are of extremely great research significance as the main parameters for aircraft detection. We used the BEM-2 two-phase flow plume as the object of study, calculated the scattering characteristics of alumina particles and the UV absorption coefficient of OH in the plume based on the MIE theory and the line-by-line integration method, established the UV radiation transfer model of aircraft plume under gas-solid coupling, simulated the UV spectral radiation characteristics of the plume, and compared them with experimental results. The results show that due to the drastic changes of temperature and pressure at the Mach and non-Mach disks in the plume, the value of OH absorption coefficient fluctuates up and down along the axial direction with the position of the Mach disk; at 261nm, 282nm, and 306nm, the spectral radiation intensity of alumina particles accounts for approximately 96%, 85%, and 73% of the total spectral radiation intensity of the plume, respectively, which are much higher than the proportion of OH gas spectral radiation intensity, but in the infrared wave band, the influence of particle scattering characteristics on the spectral radiation intensity of the plume is much lower compared to the UV wave band; the overall radial range of the UV spectral radiation intensity of the plume is relatively narrow and its tail exhibits a converging shape, showing a good consistency with the experimental results.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3