Deep low-excitation fluorescence imaging enhancement

Author:

Gu Yuanjie1ORCID,Xiao Zhibo1,Hou Wei2,Liu Cheng3,Jin Ying3,Wang Shouyu4ORCID

Affiliation:

1. HorizonFlow Laboratory

2. Shanxi Agricultural University

3. Chinese Academy of Sciences

4. OptiX+ Laboratory

Abstract

In this work, to the best of our knowledge, we provide the first deep low-excitation fluorescence imaging enhancement solution to reconstruct optimized-excitation fluorescence images from captured low-excitation ones aimed at reducing photobleaching and phototoxicity due to strong excitation. In such a solution, a new framework named Kindred-Nets is designed aimed at improving the effective feature utilization rate; and additionally, a mixed fine-tuning tactic is employed to significantly reduce the required number of fluorescence images for training but still to increase the effective feature density. Proved in applications, the proposed solution can obtain optimized-excitation fluorescence images in high contrast and avoid the dimming effect due to negative optimization from the ineffective features on the neural networks. This work can be employed in fluorescence imaging with reduced excitation as well as extended to nonlinear optical microscopy especially in conditions with low output nonlinear signals. Furthermore, this work is open source available at https://github.com/GuYuanjie/KindredNets.

Funder

Shanghai Sailing Program

Fundamental Research Program of Shanxi Province

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3