Affiliation:
1. Center for NanoTechnology (CeNTech)
2. Center for Soft Nanoscience (SoN)
3. University of Münster
Abstract
The complexity of applications addressed with photonic integrated circuits is steadily rising and poses increasingly challenging demands on individual component functionality, performance and footprint. Inverse design methods have recently shown great promise to address these demands using fully automated design procedures that enable access to non-intuitive device layouts beyond conventional nanophotonic design concepts. Here we present a dynamic binarization method for the objective-first algorithm that lies at the core of the currently most successful inverse design algorithms. Our results demonstrate significant performance advantages over previous implementations of objective first algorithms, which we show for a fundamental TE00 to TE20 waveguide mode converter both in simulation and in experiments with fabricated devices.
Funder
Deutsche Forschungsgemeinschaft
Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献