Flexible silicon photonic architecture for accelerating distributed deep learning

Author:

Wu ZhenguoORCID,Yuan Dai Liang,Wang Yuyang,Wang Songli,Bergman KerenORCID

Abstract

The increasing size and complexity of deep learning (DL) models have led to the wide adoption of distributed training methods in datacenters (DCs) and high-performance computing (HPC) systems. However, communication among distributed computing units (CUs) has emerged as a major bottleneck in the training process. In this study, we propose Flex-SiPAC, a flexible silicon photonic accelerated compute cluster designed to accelerate multi-tenant distributed DL training workloads. Flex-SiPAC takes a co-design approach that combines a silicon photonic hardware platform with a tailored collective algorithm, optimized to leverage the unique physical properties of the architecture. The hardware platform integrates a novel wavelength-reconfigurable transceiver design and a micro-resonator-based wavelength-reconfigurable switch, enabling the system to achieve flexible bandwidth steering in the wavelength domain. The collective algorithm is designed to support reconfigurable topologies, enabling efficient all-reduce communications that are commonly used in DL training. The feasibility of the Flex-SiPAC architecture is demonstrated through two testbed experiments. First, an optical testbed experiment demonstrates the flexible routing of wavelengths by shuffling an array of input wavelengths using a custom-designed spatial-wavelength selective switch. Second, a four-GPU testbed running two DL workloads shows a 23% improvement in job completion time compared to a similarly sized leaf-spine topology. We further evaluate Flex-SiPAC using large-scale simulations, which show that Flex-SiPAC is able to reduce the communication time by 26% to 29% compared to state-of-the-art compute clusters under representative collective operations.

Funder

Advanced Research Projects Agency - Energy

National Security Agency

Center for Ubiquitous Connectivity

Semiconductor Research Corporation

Defense Advanced Research Projects Agency

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Reference48 articles.

1. Efficient large-scale language model training on GPU clusters using Megatron-LM;Narayanan,2021

2. Attention is all you need;Vaswani,2017

3. XLNet: generalized autoregressive pretraining for language understanding;Yang,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3