Abstract
A two-dimensional geometrical waveguide enables ultra-thin augmented reality (AR) near-eye display (NED) with wide field of view (FOV) and large exit-pupil diameter (EPD). A conventional design method can efficiently design waveguides that meet the requirements, but is unable to fully utilize the potential display performance of the waveguide. A forward-ray-tracing waveguide design method with maximum FOV analysis is proposed, enabling two-dimensional geometrical waveguides to achieve their maximum FOV while maintaining minimum dimensions. Finally, the designed stray-light-suppressed waveguide NED has a thickness of 1.7 mm, a FOV of 50.00°H × 29.92°V, and an eye-box of 12 mm × 12 mm at an eye-relief of 18 mm.
Funder
National Key Research and Development Program of China
Strategic Priority Research Program of the Chinese Academy of Sciences
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献