Hidden conditional random field-based equalizer for the 3D-CAP-64 transmission of OAM mode-division multiplexed ring-core fiber communication

Author:

Cui Yi123,Gao Ran,Zhang Qi123,Wang Yongjun123,Liu Jie4,Wang FeiORCID,Xu Qi,Li Zhipei,Zhu LeiORCID,Chang Huan,Guo DongORCID,Zhou Sitong,Wang Fu123ORCID,Pan Xiaolong,Dong ZeORCID,Tian Qinghua123ORCID,Tian Feng123,Huang Xin5,Yan Jinghao5,Jiang Lin5,Xin Xiangjun

Affiliation:

1. Beijing University of Posts and Telecommunications (BUPT)

2. Beijing Key Laboratory of Space-Ground Interconnection and Convergence

3. State Key Laboratory of Information Photonics and Optical Communications

4. Sun Yat-Sen University

5. Ultra-high Speed Communication Laboratory

Abstract

As a key technique for achieving ultra-high capacity optical fiber communications, orbital angular momentum (OAM) mode-division multiplexing (MDM) is affected by severe nonlinear impairments, including modulation related nonlinearities, square-law nonlinearity and mode-coupling-induced nonlinearity. In this paper, an equalizer based on a hidden conditional random field (HCRF) is proposed for the nonlinear mitigation of OAM-MDM optical fiber communication systems with 20 GBaud three-dimensional carrierless amplitude and phase modulation-64 (3D-CAP-64) signals. The HCRF equalizer extracts the stochastic nonlinear feature of the OAM-MDM 3D-CAP-64 signals by estimating the conditional probabilities of the hidden variables, thereby enabling the signals to be classified into subclasses of constellation points. The nonlinear impairment can then be mitigated based on the statistical probability distribution of the hidden variables of the OAM-MDM transmission channel in the HCRF equalizer. Our experimental results show that compared with a convolutional neural network (CNN)-based equalizer, the proposed HCRF equalizer improves the receiver sensitivity by 2 dB and 1 dB for the two OAM modes used here, with l =  + 2 and l =  + 3, respectively, at the 7% forward error correction (FEC) threshold. When compared with a Volterra nonlinear equalizer (VNE) and CNN-based equalizer, the computational complexity of the proposed HCRF equalizer was found to be reduced by 30% and 41%, respectively. The bit error ratio (BER) performance and reduction in computational complexity indicate that the proposed HCRF equalizer has great potential to mitigate nonlinear distortions in high-speed OAM-MDM fiber communication systems.

Funder

National Natural Science Foundation of China

Science Fund for Creative Research Groups

National Key Research and Development Program of China

Beijing Municipal Natural Science Foundation

Open Fund of IPOC

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3