High-sensitivity synchronous angio-lymphography based on a speckle spectrum contrast OCT

Author:

Hu Yudan12ORCID,Zhao Xin1,Zhang Zhuangzhuang1,Chen Yanshan1,Li Tingfeng1,Tang Zhilie1,Tang Peijun

Affiliation:

1. South China Normal University

2. Jiangxi Science and Technology Normal University

Abstract

To achieve accurate selection and synchronous imaging of blood vessels and lymph, a speckle spectrum contrast method (SSC) based on spectral-domain optical coherence tomography (SD-OCT) is proposed in this Letter. In this method, the time-lapse optical coherence tomography (OCT) intensity signal is transformed to the Fourier frequency domain. By analyzing the frequency spectrum of the time-lapse OCT intensity signal, a parameter called SSC signal, which represents the ratio of different intervals of the high frequency to the low frequency, is utilized to extract and contrast different types of the vessels in the biological tissues. In the SSC spectrum, the SSC signals of the static tissue, lymphatic vessels, and vascular vessels can be separated in three different frequency intervals, enabling differentiation and synchronous imaging of the lymphatic-vascular vessels. A mouse ear was used to demonstrate the feasibility and efficiency of this method. By using the SSC signal as the imaging parameter, the lymphatic and blood vessels of the mouse ear are differentiated and visualized simultaneously. This study shows the feasibility of the three-dimensional (3D) synchronous angio-lymphography based on the SSC method, which provides a tool to improve the understanding for disease research and treatment.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3