Compact oblique-incidence nonlinear widefield microscopy with paired-pixel balanced imaging

Author:

Khan TuhinORCID,John BenORCID,Niemann Richarda,Paarmann AlexanderORCID,Wolf Martin,Thämer Martin

Abstract

Nonlinear (vibrational) microscopy has emerged as a successful tool for the investigation of molecular systems as it combines label-free chemical characterization with spatial resolution on the sub-micron scale. In addition to the molecular recognition, the physics of the nonlinear interactions allows in principle to obtain structural information on the molecular level such as molecular orientations. Due to technical limitations such as the relatively complex imaging geometry with the required oblique sample irradiation and insufficient sensitivity of the instrument this detailed molecular information is typically not accessible using widefield imaging. Here, we present, what we believe to be, a new microscope design that addresses both challenges. We introduce a simplified imaging geometry that enables the measurement of distortion-free widefield images with free space oblique sample irradiation achieving high spatial resolution (∼1 µm). Furthermore, we present a method based on a paired-pixel balanced detection system for sensitivity improvement. With this technique, we demonstrate a substantial enhancement of the signal-to-noise ratio of up to a factor of 10. While both experimental concepts presented in this work are very general and can, in principle, be applied to various microscopy techniques, we demonstrate their performance for the specific case of heterodyned, sum frequency generation (SFG) microscopy.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3