Simulation of nonlinear propagation of femtosecond laser pulses in air for quantitative prediction of the ablation crater shape

Author:

Yamada Ryohei1,Komatsubara Wataru1,Sakurai Haruyuki1,Konishi Kuniaki1ORCID,Mio Norikatsu1,Yumoto Junji1,Kuwata-Gonokami Makoto1ORCID

Affiliation:

1. The University of Tokyo

Abstract

The utilization of sub-100 fs pulses has attracted attention as an approach to further improve the quality and precision of femtosecond laser microfabrication. However, when using such lasers at pulse energies typical for laser processing, nonlinear propagation effects in air are known to distort the beam’s temporal and spatial intensity profile. Due to this distortion, it has been difficult to quantitatively predict the final processed crater shape of materials ablated by such lasers. In this study, we developed a method to quantitatively predict the ablation crater shape, utilizing nonlinear propagation simulations. Investigations revealed that the ablation crater diameters derived by our method were in excellent quantitative agreement with experimental results for several metals over a two-orders-of-magnitude range in the pulse energy. We also found a good quantitative correlation between the simulated central fluence and the ablation depth. Such methods should improve the controllability of laser processing with sub-100 fs pulses and contribute to furthering their practical application to processes over a wide pulse-energy range, including conditions with nonlinear-propagating pulses.

Funder

Cabinet Office, Government of Japan

Ministry of Education, Culture, Sports, Science and Technology

New Energy and Industrial Technology Development Organization

Center of Innovation Program

Japan Science and Technology Agency

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3