Large depth-of-field computational imaging with multi-spectral and dual-aperture optics

Author:

Kou Tingdong,Zhang QicanORCID,Zhang Chongyang,He Tianyue,Shen JunfeiORCID

Abstract

Large DOF (depth-of-field) with high SNR (signal-noise-ratio) imaging is a crucial technique for applications from security monitoring to medical diagnostics. However, traditional optical design for large DOF requires a reduction in aperture size, and hence with a decrease in light throughput and SNR. In this paper, we report a computational imaging system integrating dual-aperture optics with a physics-informed dual-encoder neural network to realize prominent DOF extension. Boosted by human vision mechanism and optical imaging law, the dual-aperture imaging system is consisted of a small-aperture NIR camera to provide sharp edge and a large-aperture VIS camera to provide faithful color. To solve the imaging inverse problem in NIR-VIS fusion with different apertures, a specific network with parallel double encoders and the multi-scale fusion module is proposed to adaptively extract and learn the useful features, which contributes to preventing color deviation while preserving delicate scene textures. The proposed imaging framework is flexible and can be designed in different protos with varied optical elements for different applications. We provide theory for system design, demonstrate a prototype device, establish a real-scene dataset containing 3000 images, perform elaborate ablation studies and conduct peer comparative experiments. The experimental results demonstrate that our method effectively produces high-fidelity with larger DOF range than input raw images about 3 times. Without complex optical design and strict practical limitations, this novel, intelligent and integratable system is promising for variable vision applications such as smartphone photography, computational measurement, and medical imaging.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Chengdu Science and Technology Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3