Analysis and reduction of noise-induced depolarization in catheter based polarization sensitive optical coherence tomography

Author:

Li Qingrui123,Yu Yin123,Ding Zhenyang123ORCID,Zhu Fengyu123,Li Yuanyao4,Tao Kuiyuan5,Hua Peidong123,Lai Tianduo123,Kuang Hao5,Liu Tiegen123

Affiliation:

1. Tianjin University

2. Institute of Optical Fiber Sensing of Tianjin University

3. Key Laboratory of Opto-electronics Information Technology (Tianjin University)

4. Tianjin Institute of Metrological Supervision and Testing

5. Nanjing Forssmann Medical Technology Co.

Abstract

In catheter based polarization sensitive optical coherence tomography (PS-OCT), a optical fiber with a rapid rotation in the catheter can cause low signal-to-noise ratio (SNR), polarization state instability, phase change of PS-OCT signals and then heavy noise-induced depolarization, which has a strong impact on the phase retardation measurement of the sample. In this paper, we analyze the noise-induced depolarization and find that the effect of depolarization can be reduced by polar decomposition after incoherent averaging in the Mueller matrix averaging (MMA) method. Namely, MMA can reduce impact of noise on phase retardation mapping. We present a Monte Carlo method based on PS-OCT to numerically describe noise-induced depolarization effect and contrast phase retardation imaging results by MMA and Jones matrix averaging (JMA) methods. The peak signal to noise ratio (PSNR) of simulated images processed by MMA is higher than about 8.9 dB than that processed by JMA. We also implement experiments of multiple biological tissues using the catheter based PS-OCT system. From the simulation and experimental results, we find the polarization contrasts processed by the MMA are better than those by JMA, especially at areas with high depolarization, because the MMA can reduce effect of noise-induced depolarization on the phase retardation measurement.

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program

Special Technical Support Project of China Market Supervision and Administration

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3