Stain transformation using Mueller matrix guided generative adversarial networks

Author:

Fan Jiahao,Zhang XinxianORCID,Zeng NanORCID,Liu Shaoxiong1,He HonghuiORCID,Luo Lin2,He Chao3ORCID,Ma Hui

Affiliation:

1. Shenzhen Sixth People’s Hospital (Nanshan Hospital), Huazhong University of Science and Technology Union Shenzhen Hospital

2. Peking University

3. University of Oxford

Abstract

Recently, virtual staining techniques have attracted more and more attention, which can help bypass the chemical staining process of traditional histopathological examination, saving time and resources. Meanwhile, as an emerging tool to characterize specific tissue structures in a label-free manner, the Mueller matrix microscopy can supplement more structural information that may not be apparent in bright-field images. In this Letter, we propose the Mueller matrix guided generative adversarial networks (MMG-GAN). By integrating polarization information provided by the Mueller matrix microscopy, the MMG-GAN enables the effective transformation of input H&E-stained images into corresponding Masson trichrome (MT)-stained images. The experimental results demonstrate the accuracy of the generated images by MMG-GAN and reveal the potential for more stain transformation tasks by incorporating the Mueller matrix polarization information, laying the foundation for future polarimetry-assisted digital pathology.

Funder

Shenzhen Key Fundamental Research Project

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3