Continuous-wave terahertz in-line holographic diffraction tomography with the scattering fields reconstructed by a physics-enhanced deep neural network

Author:

Jin Xiaoyu,Zhao Jie1ORCID,Wang Dayong1ORCID,Healy John J.23ORCID,Rong Lu1ORCID,Wang Yunxin1,Lin Shufeng1

Affiliation:

1. Beijing Engineering Research Center of Precision Measurement Technology and Instruments

2. Beijing University of Technology

3. University College Dublin

Abstract

Diffraction tomography is a promising, quantitative, and nondestructive three-dimensional (3D) imaging method that enables us to obtain the complex refractive index distribution of a sample. The acquisition of the scattered fields under the different illumination angles is a key issue, where the complex scattered fields need to be retrieved. Presently, in order to develop terahertz (THz) diffraction tomography, the advanced acquisition of the scattered fields is desired. In this paper, a THz in-line digital holographic diffraction tomography (THz-IDHDT) is proposed with an extremely compact optical configuration and implemented for the first time, to the best of our knowledge. A learning-based phase retrieval algorithm by combining the physical model and the convolution neural networks, named the physics-enhanced deep neural network (PhysenNet), is applied to reconstruct the THz in-line digital hologram, and obtain the complex amplitude distribution of the sample with high fidelity. The advantages of the PhysenNet are that there is no need for pretraining by using a large set of labeled data, and it can also work for thick samples. Experimentally with a continuous-wave THz laser, the PhysenNet is first demonstrated by using the thin samples and exhibits superiority in terms of imaging quality. More importantly, with regard to the thick samples, PhysenNet still works well, and can offer 2D complex scattered fields for diffraction tomography. Furthermore, the 3D refractive index maps of two types of foam sphere samples are successfully reconstructed by the proposed method. For a single foam sphere, the relative error of the average refractive index value is only 0.17%, compared to the commercial THz time-domain spectroscopy system. This demonstrates the feasibility and high accuracy of the THz-IDHDT, and the idea can be applied to other wavebands as well.

Funder

National Natural Science Foundation of China

Science Foundation of Education Commission of Beijing

Beijing Municipal Natural Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3