Full-color reflective filter in a large area exploiting a sandwiched metasurface

Author:

Ye Yan1,Gu Yu1,Wang Fei1,Cai Yangjian1,Chen Linsen1,Xu Yishen1

Affiliation:

1. Soochow University

Abstract

Metasurface-based color filters show great potential in imaging devices and color printing. However, it is still a great challenge to meet the high demand for large-area flexible displays with structural color filters. Here, a reflective color filter is developed with a sandwiched metasurface, where the photoresist grating, complementary silver grating and silicon nitride grating are sequentially stacked on the substrate. Analytical results show that bandpass reflective spectra can be achieved due to the combined influence of guided mode resonance and cavity resonance, and full-spectrum colors including three primary colors can be generated by merely varying the period of the metasurface. With only photolithography and deposition technology involved, large-area samples incorporating pixelated metasurfaces are easily fabricated. Metasurfaces with three periods of 540 nm, 400 nm and 320 nm are experimentally obtained having peak reflective efficiency of ∼ 60%, demonstrating red, green and blue colors as theoretical results. A stripe sample with the structural period varying from 250 nm to 550 nm is fabricated in an area of 10 mm × 30 mm, displaying full-color reflections as simulated. Finally, with metasurfaces of three structural periods, the pixelated Soochow University logo is fabricated in a larger area of ∼ 30 mm × 30 mm. Therefore, the proposed structure shows high compatible to roll-to-roll nano-imprinting for large-area flexible displays, with the photoresist film can be easily substituted by UV film in addition.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3