Performance enhancement of LACO-OFDM BER and PAPR using a K-means algorithm for a VLC system

Author:

Mohd Nordin Junita,Abdalmunam Hameed Aymen1,Safar Anuar,Nawawi Norizan

Affiliation:

1. Bilad Alrafidain University Collage

Abstract

Layered asymmetrical clipped optical-orthogonal frequency division multiplexing (LACO-OFDM) enhances spectral efficiency by mandating the use of a K-means algorithm in LACO-OFDM (KLACO-OFDM), which enables efficiency gains to nearly double by modulating odd and even subcarriers. The traditional receiver is not sufficiently sophisticated enough to exploit the full potential of LACO-OFDM, thereby restricting its performance. In this paper, a K-means algorithm was used to increase the spectral efficiency of LACO-OFDM by integrating machine learning to cluster the inward signal such that the original locations of the received constellations can be retrieved. A K-means algorithm is used for assigning the received constellation points into their clusters of the ordinary quadrature amplitude modulator constellation points. The new mathematical framework in the proposed scheme is structured to analyze the PAPR and BER performance of LACO-OFDM systems that have been derived. The K-means algorithm development in LACO-OFDM (KLACO-OFDM) has also reduced the intersymbol interference, hence improving the spectral efficiency of LACO-OFDM compared with the conventional system in visible light communication (VLC) systems. BER gains were about 1.2–1.6 dB at 10−3 BER value, which rises from 1.4 to 2 dB for a 10−4 BER value because a lower BER facilitates precise estimation.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3