Magnetically tunable diffractive optical elements based on ion-irradiated ultrathin ferromagnetic stacks

Author:

Huang Xiaolin,Jiang Siyuan,Wu Biao,Huo Ran,Zhao Xuefeng1,Xing Guozhong1,Long Shibing,Gao NanORCID

Affiliation:

1. Institute of Microelectronics

Abstract

We report a novel type of magnetically tunable diffractive optical element (DOE) based on ultrathin ferromagnetic (FM) Pt/Co stacks. The Pt/Co stacks are irradiated by Ar+ ions at selected areas so that the perpendicular anisotropy is spatially modulated and the DOEs can be tuned by an external magnetic field through the magnetooptical effect. Based on this concept, a diffraction grating and a Fresnel zone plate (FZP) were developed, and complementary experimental results corroborate that a magnetic field can simultaneously manipulate both the zeroth and the first diffraction orders of these DOEs. Importantly, this effect can be utilized to enhance or hide the image formed by the FZP. Our studies pave the way toward developing compact and high-precision DOEs with fast and robust tunability, facilitating various applications spanning a wide spectrum range.

Funder

CAS Project for Young Scientists in Basic Research

National Natural Science Foundation of China

USTC Research Funds of the Double First-Class Initiative

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spin–orbit torque reconfigurable diffraction gratings;Applied Physics Letters;2024-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3