Challenges and prospects for multi-chip microlens imprints on front-side illuminated SPAD imagers

Author:

Bruschini Claudio1ORCID,Antolovic Ivan Michel12,Zanella Frédéric3,Ulku Arin C.1,Lindner Scott1,Kalyanov Alexander4ORCID,Milanese Tommaso1,Bernasconi Ermanno1,Pešić Vladimir1,Charbon Edoardo1

Affiliation:

1. AQUA Laboratory

2. Pi Imaging Technology S.A.

3. CSEM SA

4. University of Zurich

Abstract

The overall sensitivity of frontside-illuminated, silicon single-photon avalanche diode (SPAD) arrays has often suffered from fill factor limitations. The fill factor loss can however be recovered by employing microlenses, whereby the challenges specific to SPAD arrays are represented by large pixel pitch (> 10 µm), low native fill factor (as low as ∼10%), and large size (up to 10 mm). In this work we report on the implementation of refractive microlenses by means of photoresist masters, used to fabricate molds for imprints of UV curable hybrid polymers deposited on SPAD arrays. Replications were successfully carried out for the first time, to the best of our knowledge, at wafer reticle level on different designs in the same technology and on single large SPAD arrays with very thin residual layers (∼10 µm), as needed for better efficiency at higher numerical aperture (NA > 0.25). In general, concentration factors within 15-20% of the simulation results were obtained for the smaller arrays (32×32 and 512×1), achieving for example an effective fill factor of 75.6-83.2% for a 28.5 µm pixel pitch with a native fill factor of 28%. A concentration factor up to 4.2 was measured on large 512×512 arrays with a pixel pitch of 16.38 µm and a native fill factor of 10.5%, whereas improved simulation tools could give a better estimate of the actual concentration factor. Spectral measurements were also carried out, resulting in good and uniform transmission in the visible and NIR.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3