Affiliation:
1. Ningbo University
2. Australian National University
3. Shandong University
4. Tel Aviv University
5. Texas A&M University at Qatar
Abstract
Transverse second-harmonic generation, in which the emission angles of the second harmonic are determined by the spatial modulation of the quadratic nonlinearity, has important applications in nonlinear optical imaging, holography, and beam shaping. Here we study the role of the local duty cycle of the nonlinearity on the light intensity distribution in transverse second-harmonic generation, taking the generation of perfect vortices in periodically poled ferroelectric crystal as an example. We show, theoretically and experimentally, that spatial variations of the nonlinearity modulation must be accompanied by the corresponding changes of the width of inverted ferroelectric domains, to ensure uniformity of the light intensity distribution in the generated second harmonic. This work provides a fundamental way to achieve high-quality transverse second-harmonic generation and, hence, opens more possibilities in applications based on harmonic generation and its control.
Funder
National Natural Science Foundation of China
Yongjiang Scholar Foundation of Ningbo
K C Wong Magna Fund of Ningbo University
Qatar National Research Fund
Australian Research Council
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献