Affiliation:
1. University of California
Abstract
We present a telecommunication-compatible frequency-domain terahertz spectroscopy system realized by novel photoconductive antennas without using short-carrier-lifetime photoconductors. Built on a high-mobility InGaAs photoactive layer, these photoconductive antennas are designed with plasmonics-enhanced contact electrodes to achieve highly confined optical generation near the metal/semiconductor surface, which offers ultrafast photocarrier transport and, hence, efficient continuous-wave terahertz operation including both generation and detection. Consequently, using two plasmonic photoconductive antennas as a terahertz source and a terahertz detector, we successfully demonstrate frequency-domain spectroscopy with a dynamic range more than 95 dB and an operation bandwidth of 2.5 THz. Moreover, this novel approach to terahertz antenna design opens up a wide range of new possibilities for many different semiconductors and optical excitation wavelengths to be utilized, therefore bypassing short-carrier-lifetime photoconductors with limited availability.
Funder
Institution of Engineering and Technology
U.S. Department of Energy
Office of Naval Research
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献