Optimization of SiO2 reflective layer thickness for improving the performance of structured CsI scintillation screen based on oxidized Si micropore array template in X-ray imaging

Author:

Teng Yunxue,Gu Mu1ORCID,Sun Zhixiang,Liu Xiaolin,Liu BoORCID,Zhang Juannan,Huang Shiming,Ni Chen,Zhao Jun1

Affiliation:

1. Shanghai Advanced Research Institute

Abstract

Structured scintillation screen based on oxidized Si micropore array template can effectively improve the spatial resolution of X-ray imaging. The purpose of this study is to investigate the effect of SiO2 layer thickness on the light guide and X-ray imaging performance of CsI scintillation screen when the structural period is as small as microns. Cylindrical micropores with a period of 4.3 µm, an average diameter of 3.3 µm and a depth of about 40 µm were prepared in Si wafers. SiO2 layer was formed on the pore walls after thermal oxidation. Increasing SiO2 layer thickness would be beneficial to the propagation of scintillation light along the cylindrical channels. What was not previously anticipated was that the pore size gradually shrank as the SiO2 layer thickened. The pore shrinkage would reduce the filling rate of CsI in the templates and thus would reduce the production of scintillation light. The structured CsI scintillation screens with different SiO2 layer thicknesses were fabricated by filling CsI scintillator into the oxidized silicon micropore array template. The morphology, crystallinity, X-ray excited optical luminescence, and X-ray imaging performance of the screens were studied. The results show that the spatial resolutions of X-ray images measured using the structured CsI scintillation screens with different SiO2 layer thicknesses are close to each other, and they are all about 110 lp/mm. However, the X-ray excited optical luminescence of the screen and detective quantum efficiency of X-ray imaging vary with the thickness of the SiO2 layer. The optimal thickness is about 350 nm.

Funder

National Natural Science Foundation of China

X-ray Imaging and Biomedical Application Beamline (BL13HB) at Shanghai Synchrotron Radiation Facility

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3