Designing a single-mode anomalous dispersion silicon core fiber for temporal multiplet formation

Author:

Ghosh Binoy KrishnaORCID,Ghosh Dipankar1ORCID,Basu MousumiORCID

Affiliation:

1. MCKV Institute of Engineering

Abstract

A highly nonlinear single-mode anomalous dispersion silicon core fiber (SCF) is suitably designed and optimized to generate a high repetition rate pulse train in the temporal domain from a single input pulse at a sufficiently shorter optimum length in comparison to silica-based standard fibers used for the same purpose. The large amount of Kerr-induced nonlinearity of a SCF is effectively utilized here such that input Gaussian pulses or pulse trains transform into a highly repetitive temporal multiplet. The effects of free-carrier generation-induced change in absorption and dispersion are included while studying the nonlinear pulse propagation through the SCF. To declare the generated pulse as a superior-graded triplet, a Q parameter, as a function of relative pulse parameters of the individual pulses of a triplet, is defined for the first time, to the best of our knowledge. Different pulse parameters are thoroughly optimized as well as the effect of external gain is examined from the perspective of requirement of shorter fiber length and development of quality triplets. Finally, the work is further extended for the formation of quadruplet pulses by the same type of SCF. It is to be mentioned here that such a methodical study for the generation of a temporal multiplet using a semiconductor core fiber has not been reported earlier.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3