Inverse lithography physics-informed deep neural level set for mask optimization

Author:

Ma Xing-Yu1ORCID,Hao Shaogang1

Affiliation:

1. Tencent Quantum Lab

Abstract

As the feature size of integrated circuits continues to decrease, optical proximity correction (OPC) has emerged as a crucial resolution enhancement technology for ensuring high printability in the lithography process. Recently, level set-based inverse lithography technology (ILT) has drawn considerable attention as a promising OPC solution, showcasing its powerful pattern fidelity, especially in advanced processing. However, the massive computational time consumption of ILT limits its applicability to mainly correcting partial layers and hotspot regions. Deep learning (DL) methods have shown great potential in accelerating ILT. However, the lack of domain knowledge of inverse lithography limits the ability of DL-based algorithms in process window (PW) enhancement, etc. In this paper, we propose an inverse lithography physics-informed deep neural level set (ILDLS) approach for mask optimization. This approach utilizes level set-based ILT as a layer within the DL framework and iteratively conducts mask prediction and correction to significantly enhance printability and PW in comparison with results from pure DL and ILT. With this approach, the computational efficiency is significantly improved compared with ILT. By gearing up DL with the knowledge of inverse lithography physics, ILDLS provides a new and efficient mask optimization solution.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3