Affiliation:
1. Key Laboratory of Aerospace Thermophysics of Ministry of Industry and Information Technology
2. Harbin Institute of Technology
Abstract
In3SbTe2 (IST), a new non-volatile phase-change material (PCM), promises highly tunable infrared optical properties and offers a distinct path to the significant modulation of its optical scattering fingerprint, suggesting tremendous applications. In this Letter, we demonstrate and optimize a four-layer emitter based on IST, achieving an ultra-wide average emissivity variation of more than 94% in the middle-infrared region (MIR, 3–5 µm). This remarkable emissivity difference can be further continuously modified by changing the structural composition in terms of the amorphous and crystalline states of the IST layers. Based on this continuous programmable emission, the MIR emission characteristics of marble, maple leaf, and blue polyvinyl chloride are successfully imitated together on a desert background, demonstrating the programmable and multi-level MIR optical camouflage capabilities of IST. This work provides a promising platform for continuously modulating emission characteristics and offers a reference for the subsequent application of programmable optical devices.
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献