Affiliation:
1. Key Laboratory of Aerospace Information Materials and Physics (NUAA)
2. Nanjing University of Aeronautics and Astronautics
Abstract
The hologram formed by incoherent holography based on self-interference should preserve the phase difference information of the object, such as the phase difference between the mutually orthogonal polarizations of anisotropic object. How to decode this phase difference from this incoherent hologram, i.e., phase-difference imaging, is of great significance for studying the properties of the measured object. However, there is no general phase-difference imaging theory due to both diverse incoherent holography systems and the complicated reconstruction process from holograms based on the diffraction theory. To realize phase-difference image in incoherent holography, the relationship between the phase difference of the object and the image reconstructed by holograms is derived using a general physical model of incoherent holographic systems, and then the additional phase that will distort this relationship in actual holographic systems is analyzed and eliminated. Finally, the phase-difference imaging that is suitable for the most incoherent holographic systems is realized and the general theory is experimentally verified. This technology can be applied to phase-difference imaging of anisotropic objects, and has potential applications in materials science, biomedicine, polarized optics and other fields.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Natural Science Foundation of Jiangsu Province