Affiliation:
1. Wuhan Textile University
2. the Chinese University of Hong Kong
3. South China Normal University
Abstract
Optofluidic techniques have evolved as a prospering strategy for microparticle manipulation via fluid. Unfortunately, there is still a lack of manipulation with simple preparation, easy operation, and multifunctional integration. In this Letter, we present an optofluidic device based on a graphite oxide (GO)-coated dual-fiber structure for multifunctional particle manipulation. By changing the optical power and the relative distance of the fibers, the system can excite thermal fluidic vortices with three inter-coupled states, namely uncoupled, partially coupled and completely coupled states, and therefore can realize capture, sorting, and transportation of the target particles. We conduct a numerical analysis of the whole system, and the results are consistent with the experimental phenomena. This versatile device can be utilized to manipulate target particles in complex microscopic material populations with the advantages of flexible operation, user-friendly control, and low cost.
Funder
Science and Technology Planning Project of Guangdong Province
National Natural Science Foundation of China