Direct generation of high brightness path entangled N00N states using structured crystals and shaped pump beams

Author:

Di Domenico Giuseppe1ORCID,Pearl Shaul12,Karnieli Aviv1,Trajtenberg-Mills Sivan1,Juwiler Irit3ORCID,Eisenberg Hagai S.4,Arie Ady1ORCID

Affiliation:

1. Tel-Aviv University TAU

2. Soreq NRC

3. Sami Shamoon College of Engineering

4. Racah Institute of Physics, Hebrew University of Jerusalem

Abstract

Optical N00N states are N-photon path entangled states with important applications in quantum metrology. However, their use was limited till now owing to the difficulties of generating them in an efficient and robust manner. Here we propose and experimentally demonstrate two new simple, compact and robust schemes to generate path entangled N00N states with N = 2 that emerge directly from the nonlinear interaction. The first scheme is based on shaping the pump beam, and the second scheme is based on modulating the nonlinear coefficient of the crystal. These new methods exhibit high coincidence count rates for the detection of a N00N state, reaching record value of 2 × 105 coincidences per second. We observe super-resolution by measuring the second order correlation on the generated N = 2 state in an interferometric setup, showing the distinct fringe periodicity at half of the optical wavelength. Our findings may pave the way towards scalable and efficient sources for super-resolved quantum metrology applications and for the generation of bright squeezed vacuum states.

Funder

Israel Academy of Sciences and Humanities

Ministry of Science, Technology and Innovation

Israel Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3