Abstract
A near-infrared (NIR) sub-ppm level photoacoustic sensor for hydrogen sulfide (H2S) using a differential Helmholtz resonator (DHR) as the photoacoustic cell (PAC) was presented. The core detection system was composed of a NIR diode laser with a center wavelength of 1578.13 nm, an Erbium-doped optical fiber amplifier (EDFA) with an output power of ∼120 mW, and a DHR. Finite element simulation software was used to analyze the influence of the DHR parameters on the resonant frequency and acoustic pressure distribution of the system. Through simulation and comparison, the volume of the DHR was 1/16 that of the conventional H-type PAC for a similar resonant frequency. The performance of the photoacoustic sensor was evaluated after optimizing the DHR structure and modulation frequency. The experimental results showed that the sensor had an excellent linear response to the gas concentration and the minimum detection limit (MDL) for H2S detection in differential mode can reach 460.8 ppb.
Funder
National Natural Science Foundation of China
National Key Scientific Instrument and Equipment Development Projects of China
Henan Provincial Key Science and Technology Research Project
Zhengzhou Collaborative Innovation Major Project
Henan Provincial Science and Technology Research Project
Subject
Atomic and Molecular Physics, and Optics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献