Near-infrared sensitive differential Helmholtz-based hydrogen sulfide photoacoustic sensors

Author:

Ma Qiuyang,Li Lei,Gao Zijian,Tian ShenORCID,Yu Jiaxin,Du Xuechao,Qiao Yingying,Shan Chongxin

Abstract

A near-infrared (NIR) sub-ppm level photoacoustic sensor for hydrogen sulfide (H2S) using a differential Helmholtz resonator (DHR) as the photoacoustic cell (PAC) was presented. The core detection system was composed of a NIR diode laser with a center wavelength of 1578.13 nm, an Erbium-doped optical fiber amplifier (EDFA) with an output power of ∼120 mW, and a DHR. Finite element simulation software was used to analyze the influence of the DHR parameters on the resonant frequency and acoustic pressure distribution of the system. Through simulation and comparison, the volume of the DHR was 1/16 that of the conventional H-type PAC for a similar resonant frequency. The performance of the photoacoustic sensor was evaluated after optimizing the DHR structure and modulation frequency. The experimental results showed that the sensor had an excellent linear response to the gas concentration and the minimum detection limit (MDL) for H2S detection in differential mode can reach 460.8 ppb.

Funder

National Natural Science Foundation of China

National Key Scientific Instrument and Equipment Development Projects of China

Henan Provincial Key Science and Technology Research Project

Zhengzhou Collaborative Innovation Major Project

Henan Provincial Science and Technology Research Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3