Generation of 2D Airy beams with switchable metasurfaces

Author:

Xue Xiaoju1,Xu Bijun12ORCID,Wu Bairui1,lin jingwei3,Wang Xiaogang1ORCID,Yu Xinning1,Lin Lu1,Li Hongqiang24

Affiliation:

1. Zhejiang University of Science and Technology

2. Institute of Dongguan-Tongji University

3. Hunan University

4. Tongji University

Abstract

Airy beams exhibit intriguing characteristics, such as diffraction-free propagation, self-acceleration, and self-healing, which have aroused great research interest. However, the spatial light modulator that generates Airy beams has problems such as narrow operational bandwidth, high cost, poor phase discretization, and single realization function. In the visible region (λ∼532 nm), we proposed a switchable all-dielectric metasurface for generating transmissive and reflective two-dimensional (2D) Airy beams. The metasurface was mainly composed of titanium dioxide nanopillars and vanadium dioxide substrate. Based on the Pancharatnam-Berry phase principle, a high-efficient Airy beam can be generated by controlling the phase transition of vanadium dioxide and changing the polarization state of the incident light. The optimized optical intensity conversion efficiencies of the transmissive and reflective metasurfaces were as high as 97% and 70%, respectively. In the field of biomedical and applied physics, our designed switchable metasurface is expected to offer the possibility of creating compact optical and photonic platforms for efficient generation and dynamic modulation of optical beams and open up a novel path for the application of high-resolution optical imaging systems.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3